Sprouts und Brussels Sprouts: Unterschied zwischen den Versionen

Aus QED-WIKI - Ein Berliner Mathe-WIKI von und für Schülerinnen und Schüler
Wechseln zu: Navigation, Suche
Zeile 22: Zeile 22:
 
Wer interessiert ist, dem sei folgender leicht lesbarer Artikel empfohlen, in dem dem Sprouts nicht nur global, sondern auch lokal untersucht wird und feinere Kriterien hergeleitet werden:  
 
Wer interessiert ist, dem sei folgender leicht lesbarer Artikel empfohlen, in dem dem Sprouts nicht nur global, sondern auch lokal untersucht wird und feinere Kriterien hergeleitet werden:  
 
[http://www.sciencedirect.com/science/article/pii/S0166218X04001209/pdf?md5=b4754cfc164c466c47174f44ec68c0d4&pid=1-s2.0-S0166218X04001209-main.pdf A modular approach to Sprouts]
 
[http://www.sciencedirect.com/science/article/pii/S0166218X04001209/pdf?md5=b4754cfc164c466c47174f44ec68c0d4&pid=1-s2.0-S0166218X04001209-main.pdf A modular approach to Sprouts]
 +
  
 
Zurück: [[MSG-12ab-2014-15|MSG-12ab]]
 
Zurück: [[MSG-12ab-2014-15|MSG-12ab]]

Version vom 26. September 2014, 12:53 Uhr

In zwei Zirkeln beschäftigen wir uns mit dem 1967 von John Conway und Michael Patterson vorgeschlagenen Spiel Sprouts und seinen Abwandlungen wie Brussels Sprouts. Sprouts ist ein topologisches Spiel, es geht im Zirkel darum, Strukturen zu entdecken, die uns helfen, eine Gewinnstrategie zu finden.

Inhaltsverzeichnis

 [Verbergen

Zirkel am 11.09.2014

Zu Beginn wurden beide Spiele vorgestellt und Gemeinsamkeiten und Unterschiede zusammengetragen. Wir haben uns entschieden, zuerst das komplizierter erscheinende Brussels Sprouts genauer unter die Lupe zu nehmen.

Brussels Sprouts

Bei paarweisen Spielen ist schon einiges aufgefallen, was zur Analyse hilfreich war. Die Vermutung, dass bei ungerader Startkreuzanzahl der erste Spieler, bei gerade Startkreuzanzahl der nachziehende Spieler gewinnen kann, war schnell gefunden. Etwas kniffliger war es, zunächst zu begründen, dass das Spiel auch wirklich immer endet, das liegt nämlich keinesfalls auf der Hand. Über eine geschickte Einteilung der Züge, abhängig davon, wie sie die Anzahl der Verbindungsmöglichkeiten verändern bzw. Komponenten des entstehenden Graphs verbinden oder Gebiete abtrennen, konnten wir herausfinden, dass die Anzahl der Züge stets 5n-2 beträgt, wenn n die Anzahl der Startkreuze bezeichnet. Damit war klar, dass der Gewinner des Spiels von vornherein feststeht - und die Vermutung bestätigt.

Nicht ganz so einfach sieht es bei dem zu Beginn noch viel einfacher aussehenden Spiel

Sprouts

aus. Hier konnten wir schon nach wenigen Spielen feststellen, dass das Spiel verschiedene Ausgänge haben kann, es also wirklich Sinn macht, nach einer idealen Spielstrategie zu suchen. Bei 2 Startknoten kann der zweite, also der nachziehende Spieler einen Sieg erspielen, wie wir gesehen haben. Genauer untersuchen wir das Spiel im

Zirkel am 18.09.2014

Wir haben uns zuerst das Spiel mit 2 Startpunkten genauer angeschaut, den Spielbaum analysiert und eine Gewinnstrategie für den nachziehenden Spieler formuliert. Dann sind wir Conways Vorschlag gefolgt, die Punkte in drei Gruppen einzuteilen. Wir haben eine untere und eine ober Schranke für die Anzahl der Spielzüge hergeleitet und Zusammenhänge zwischen dieser Anzahl, der Anzahl der überlebenden und der Anzahl der abgeschiedenen Knoten hergestellt, woraus sich Anhaltspunkte für ein strategisches Spiel ergeben.

Wer interessiert ist, dem sei folgender leicht lesbarer Artikel empfohlen, in dem dem Sprouts nicht nur global, sondern auch lokal untersucht wird und feinere Kriterien hergeleitet werden: A modular approach to Sprouts


Zurück: MSG-12ab