Normalparabel: Unterschied zwischen den Versionen

Aus QED-WIKI - Ein Berliner Mathe-WIKI von und für Schülerinnen und Schüler
Wechseln zu: Navigation, Suche
Zeile 7: Zeile 7:
  
  
'''Die Normalparabel'''
+
'''Die Normalparabel''' [[Datei:Normalparabel-Abbildung.gif|miniatur|Normalparabel Bild]]
  
 
Eine Normalparabel ist eine Parabel, die mit der Funktionsgleichung f(x)=x<sup>2</sup> beschrieben wird. Den Schnittpunkt von Symmetrieachse und Parabel bezeichnet man als Scheitelpunkt der Parabel. In diesem Beispiel ist das der Punkt S(0/0).
 
Eine Normalparabel ist eine Parabel, die mit der Funktionsgleichung f(x)=x<sup>2</sup> beschrieben wird. Den Schnittpunkt von Symmetrieachse und Parabel bezeichnet man als Scheitelpunkt der Parabel. In diesem Beispiel ist das der Punkt S(0/0).
 
Der Scheitelpunkt der Funktion liegt im Koordinatenursprung. Der Graph der Parabel ist symmetrisch zur y-Achse.
 
Der Scheitelpunkt der Funktion liegt im Koordinatenursprung. Der Graph der Parabel ist symmetrisch zur y-Achse.
  
[[Datei:Normalparabel-Abbildung.gif|thumb|Normalparabel Bild]]
+
 
  
  

Version vom 23. Januar 2014, 09:17 Uhr

Wird von 1905GS1905 und Galata1905 erstellt.

  • Normalparabel und deren Verschiebung
  • Applet mit Geogebra erstellen (Schieberegler, übersichtlich gestalten, Arbeitsaufträge dazu)
  • Aufgaben mit Lösungen, die man ein/ausblenden kann
  • Multiple-Choice-Test oder ähnliches


Die Normalparabel
Normalparabel Bild

Eine Normalparabel ist eine Parabel, die mit der Funktionsgleichung f(x)=x2 beschrieben wird. Den Schnittpunkt von Symmetrieachse und Parabel bezeichnet man als Scheitelpunkt der Parabel. In diesem Beispiel ist das der Punkt S(0/0). Der Scheitelpunkt der Funktion liegt im Koordinatenursprung. Der Graph der Parabel ist symmetrisch zur y-Achse.



Achsenparallele Verschiebungen der Normalparabel


Verschiebung längs der y-Achse:

Beispiel:

Die Normalparabel wird um 3 Einheiten in Richtung der positiven y-Achse verschoben. Der verschobene Graph definiert eine Funktion g. Bestimmen Sie die Funktionsgleichung von g.

Verschiebung längs der x-Achse:

Beispiel:

Die Normalparabel wird um zwei Einheitem in Richtung der positiven x-Achse verschoben. Wie lautet die Gleichung der so entstandenen Parabel g?


Verschiebung längs beider Achsen:

Die Normalparabel soll so verschoben werden, dass ihr Scheitelpunkt bei S(2/3) liegt. Wie lautet nun die Gleichung der Funktion g?

Wir können auch die Formel der Funktion verallgemeinern:

Graph von g(x)=(x-xs)2+ys ist eine Parabel, die aus der Normalparabel durch Verschiebung um xs längs der x-Achse und um ys längs der y-Achse entsteht. xs und ys sind die Koordinaten des Scheitelpunktes.