Normalparabel: Unterschied zwischen den Versionen
Zeile 62: | Zeile 62: | ||
Graph von g(x)=(x-x<sub>s</sub>)<sup>2</sup>+y<sub>s</sub> ist eine Parabel, die aus der Normalparabel durch Verschiebung um x<sub>s</sub> längs der x-Achse und um y<sub>s</sub> längs der y-Achse entsteht. x<sub>s</sub> und y<sub>s</sub> sind die Koordinaten des Scheitelpunktes. | Graph von g(x)=(x-x<sub>s</sub>)<sup>2</sup>+y<sub>s</sub> ist eine Parabel, die aus der Normalparabel durch Verschiebung um x<sub>s</sub> längs der x-Achse und um y<sub>s</sub> längs der y-Achse entsteht. x<sub>s</sub> und y<sub>s</sub> sind die Koordinaten des Scheitelpunktes. | ||
+ | |||
+ | |||
+ | Hier das Geogebra-Applet: | ||
+ | |||
+ | <ggb_applet width="783" height="594" version="4.2" ggbBase64="UEsDBBQACAgIAG1uPUQAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICABtbj1EAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbNVY627cuBX+nX2KA/0onO5cSOqezmSxu8C2WzhBULuLRYsWoCSOhmuNpErUzDjI4/RN9sX2kJRmNGM7dewAmyKxKUqH5/Kdcz6SXnyz3xSwFU0rq3Lp0BlxQJRplckyXzqdWk0j55vXXy1yUeUiaTisqmbD1dLxZsw5rsPZLCB6scyWTphGjARJOo0pZVMvS7MpX2XJVKScxCuyyghHSdi38lVZveUb0dY8FVfpWmz4ZZVyZXSulapfzee73W42WJ9VTT7P82S2bzMH0POyXTr9wytUd7Jo5xpxRgid//zm0qqfyrJVvEyFAzqqTr7+6sViJ8us2sFOZmqN3keuA2sh8zWGGRKczLVQjbHWIlVyK1pcOpqamNWmdowYL/X3F/YJikM4DmRyKzPRLB0yc5lLacBoHARh7LmRA1UjRal6WdrbnA/aFlspdlatfjIWPRKHmALZyqQQS2fFixajkuWqQUTRoabDaatuC5HwZpgf/aET/IcC8r3QujAhFoalw2IyQe8mISET3yfWl7FhB1RVFUYrAT+GDx+AEUZgogdqB4ZDENhPxL4jrh2YHTw7+FbGs8s9K+pZGc/KeO5H4uznx0D7FyeRDnGycZxkQiYY+MQEfxZjNIqR6gA+ANWem8EF7TM1vuvB66eBnYZmoMQOtP8Y6V8Gq+CZ0bhDNO44GtQ+0T/BAxHRkVVbCw8bvVMrg0XTG4/Bjz0rxkOEzD+zxx6K7pmgDgapP4LUx/rX/83PHZPuJ8X4IKSfYDHwntPvTzAYkpNWH/rcjrQfPwbDZ3NqMR8YcNE7BO1ay/alrMSm1S66sSEkoOBj0wYh8ocPNMYh1M3LgPrg+TilEQR6DMHV/eqBCxFoOeqCoR0/wl+e6eUAfNSlX4a2qcH1wHeBGrLyAFEAQ3iICXNRwvfBx0XaOtVm3QC8ACduBB46qKku1JTi4jqco3EGLgVXr6UhsAACBqGmS+ppFg0i7TsqZRAQCPRS5EvkSsuTuCICV0eDXVBXrTyAuxZFfciKwVGWdadOsEs32fCoqjPprEpvvjtg3X8RvFVjMdymjpuh3bZO9soXi4InosATxZUuBIAtLzBXjrGwqkoFQxEw+y5veL2WaXsllMJVLfzCt/ySK7H/AaXbwbYxbbbwhejSQmaSlz9hlWgVWiHcu6P7QWCtpFXVZFe3LZYO7P8hmkoTKp15Lou82GMhC13fgdv+SxjNCIvjmEQBCUPPx09tynXNs2DmhXFEgzCMXdy5tLHbh78Z22J7iI3vRTvgnzcyGz//2H5XFdkB67qSpfqe16przPEME9zooL4t80IYbA3x4kEnvUmq/ZWl0MDqur6txQH1JP++KqoGGk2xGErej4kdjYx27CClqSe3Q2KGPlEyO4jQmBkZMyZ2NFKYeetdHysdAqVksCRbwzfY7OPKNGWjT05dKdXlMFEyvemDpVb+bbdJsOL6Zacq6WdSuZif1djiRjSlKGwllZjLrupaW9qH8nyx6Frxjqv1t2X2N5FjV77jmhgVqraiR48zkcoNLrTve+i4zuzf0VX7NhN5I4YIC3MktsCOO8rW9Z3XRtUPTbX5sdxeY9mcubqYD/Es2rSRtS5OSJCpb8SxADPZcuT5bLwOg28xilRzDgKpNIhv9SWhqDFWBBim8BPGm66lSLoyF6UDvFPrCkvmz7zgitOYYOll2N/67Al//fW/ZSkaJFXqmSP1rmpu2rUQ6lrsFfCk2qLgWCXgqRpObGIBikJn3bgoCrHBwzUo0wJltxGNTA+1wI0RRKMbAJtFFjJdCFAlvyCTndXPMW34+U4r+dQ0AFYzOrTmWiPtW4HfoqvjtBiFb6qst93LtYW+KcBGIo1PsU1gw/emXzD8tio6hbclrITyeFuy7vWEh+dAfRfDJb4b66dbfAr1w0ruR/nEJMj3WLynlXjsV4UsfIM3kNbwiuoZxDz8RWaZKA8O8xKL15QA8mltIwbcA4RtwcPSGhEw3DUqvD49/zNRyXmi3Bl7YqKIpTOqj5dfTKaiPlNx9P+eqfQ8U/SpLUVsngg77E1fQKY81meKumSUKiv+xWVqXzdoTavpkV7hEW6vD3oX+5ewBA5/hIs9snTy8t8X7CV8Dak91p3meNWVhuOdo5qnJ5TcaTvyyGSSp+L5MUxg6eQ9KLkFZa+huGfzuINC/gwU7qOfT8Th6TXyuTFcOte0x/AP/+kq9Se7IU/7Hdm+uwdRPNUrZ6Ti94XzXiYA3fWePqRgz7PQewQU7AQK3WlLfrGfYouxr9NHYsF+zwaT7SW/Fj+fn1LNda1Fsl8dLvd4y3jT/+XYXuNIf+N/DKrIpZZJg8cUGMJD7wJrH5G3LozL/1z9S5OYfdtDfQ+fnWJtNH8c7lHnfOF4t4o36p2+LBqM8QQYu4EXuzSMYhb4nkE8mEVB5OvbLHF9FmFVw3ur9iwP8/EJ31y5+7/Gv/4NUEsHCHg1SI0xBwAAPRgAAFBLAQIUABQACAgIAG1uPURFzN5dGgAAABgAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAICAgAbW49RHg1SI0xBwAAPRgAAAwAAAAAAAAAAAAAAAAAXgAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAADJBwAAAAA=" showResetIcon = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /> |
Version vom 29. Januar 2014, 13:52 Uhr
Wird von 1905GS1905 und Galata1905 erstellt.
Das ist schonmal ein guter Start! Bitte schreibt noch einen einleitenden Text, überlegt, was ihr zum Applet dazu schreibt. Erstellt ein Inhaltsverzeichnis. --A.Hoffkamp (Diskussion) 12:50, 29. Jan. 2014 (CET) |
- Normalparabel und deren Verschiebung
- Applet mit Geogebra erstellen (Schieberegler, übersichtlich gestalten, Arbeitsaufträge dazu)
- Aufgaben mit Lösungen, die man ein/ausblenden kann
- Multiple-Choice-Test oder ähnliches
Eine Normalparabel ist eine Parabel, die mit der Funktionsgleichung f(x)=x2 beschrieben wird. Den Schnittpunkt von Symmetrieachse und Parabel bezeichnet man als Scheitelpunkt der Parabel. In diesem Beispiel ist das der Punkt S(0/0). Der Scheitelpunkt der Funktion liegt im Koordinatenursprung. Der Graph der Parabel ist symmetrisch zur y-Achse.
Achsenparallele Verschiebungen der Normalparabel
Verschiebung längs der y-Achse:
Beispiel:
Die Normalparabel wird um 3 Einheiten in Richtung der positiven y-Achse verschoben. Der verschobene Graph definiert eine Funktion g. Bestimmen Sie die Funktionsgleichung von g.
Verschiebung längs der x-Achse:
Beispiel:
Die Normalparabel wird um zwei Einheitem in Richtung der positiven x-Achse verschoben. Wie lautet die Gleichung der so entstandenen Parabel g?
Verschiebung längs beider Achsen:
Die Normalparabel soll so verschoben werden, dass ihr Scheitelpunkt bei S(2/3) liegt. Wie lautet nun die Gleichung der Funktion g?
Wir können auch die Formel der Funktion verallgemeinern:
Graph von g(x)=(x-xs)2+ys ist eine Parabel, die aus der Normalparabel durch Verschiebung um xs längs der x-Achse und um ys längs der y-Achse entsteht. xs und ys sind die Koordinaten des Scheitelpunktes.
Hier das Geogebra-Applet: