GraphTermDarstellungen

Aus QED-WIKI - Ein Berliner Mathe-WIKI von und für Schülerinnen und Schüler
Wechseln zu: Navigation, Suche
Nuvola apps kig.png   Merke

Das ist schonmal ein guter Start! Bitte schreibt einen längeren einleitenden Text. Ein Video auf deutsch und türkisch wäre super! Ansonsten sind noch einige Punkte nicht bearbeitet (s. unten). --A.Hoffkamp (Diskussion) 12:53, 29. Jan. 2014 (CET)


Hier lernt ihr wie die Graphen und Funktionsterme aussehen und wie ihr die Nullstellen und den Scheitelpunkt berechnen könnt.

Inhaltsverzeichnis


Graphen erkennen

eine Normalparabel

Den Graphen einer Quadratischen Funktion nennt man Parabel.
Man erkennt die Funktionsterme von quadratische Funktion an dem x².
z.B. F(x)=x² oder F(x)=2x²+6

Nullstellenberechnung

Nullstellen sind die Punkte auf einer Parabel die auf der x-Achse liegen.

Berechnung:
Zuerst muss man die Funktion in die Normalform setzen, also es darf nichts vor dem x² stehen
F(x)=2x²+6x+12 |:2
F(x)=x²+3x+6

Nun muss man die p-q Formel benutzen, die lautet:
x_{1,2}=-\frac{P}{2}+-\sqrt{(\frac{P}{2})^2-q}
Dabei ist p die zahl vor dem x und q die zahl ohne x, also F(x)=x²+px+q

Wird von -zweistein- und Peterstein erstellt.

  • Wie sehen die Graphen, Funktionsterme von quadratischen Funktionen aus
  • Aufgaben zum Erstellen von Graphen und Funktionstermen: Zuordnungstest (Graphen zu Termen zuordnen), Terme auch in der Form (x-2)(x+3)=f(x) schreiben
  • Nullstellenberechnungen (zB Video mit Erklärung der pq-Formel-Anwendung)
  • Was ist der Scheitelpunkt? (ausführliche Berechnung zum Scheitelpunkt macht eine andere Gruppe; hier soll nur an einfachen Beispielen gezeigt werden, wie man diesen erkennt)