Platonische Körper
Inhaltsverzeichnis |
Einführung ins Thema "Platonische Körper"
Die platonischen Körper wurden nach dem antiken griechischen Philosophen Platon benannt. Dieser hatte in seinem Werk Timaios die 5 platonischen Körper beschrieben. Er war allerdings nicht der erste, der sich damit beschäftigt hatte. Bereits die Phytagoreer haben die platonischen Körper untersucht. Der Beweis, dass es nur 5 platonische Körper gibt, wurde von dem Mathematiker Theaitetos erbracht.--Delfin (Diskussion) 10:25, 28. Jan. 2015 (CET)
Was hat es mit dem "Platonischen Weltbild" auf sich?
Geschichte der Platonischen Koerper
Laut vielen Überlieferungen wahr der Hexaeder schon in vielen alten Hochkulturen bekannt. Das Dodekaeder soll erstmals Pythagoras entdeckt haben,der unter dem Namen Pyramide auch schon das Tetraeder kannte.
Heron von Alexandria soll die Beyeichnung Tetraeder erst eingeführt haben. Das Oktoeder und das Ikosaeder soll Theaitetos von Athen entdeckt haben. Bereits 300 v. Chr. findet man im Buch von Euklid Beschreibungen und Beweise zu den fünf platonischen Körpern. Später nahm Platon die platonischen Koerper mit in seine Theorie von
den vier Elementen. Weit verbreitet war das Dodekaeder als Schmuckobjekt und Glücksbringer der Antike.
In seinem Jugendwerk Mysterium Cosmographicum nutye Johannes Kepler die Eigenschaft der platonischen Körper, dass sämtliche Mittelpunkte der Flächen auf einem Kreis liegen und auch die Eckpunkte der Flächen liegen auf einem Kreis.
Anzahl und Art der Platonischen Körper
Beschreibungen und Abbildungen aller platonischen Körper. Welche Eigenschaften verbinden diese Körper? Was sind konvexe Polyeder?
Eigenschaften der Platonischen Koerper
Um eine für einen platonischen Koerper typische räumliche Ecke zu bilden, muessen in jeder Ecke mindestens drei Vielecke zusammenstossen. Die Gesamtwinkelsumme aller n-Ecke, die in einer Ecke zusammenstossen muss stets kleiner als 360°,da das reguläre Polyeder konvex ist. Es können also nur drei,vier oder fünf regelmäßge Dreiecke, drei Quadrate oder drei regelmäße Fünfecke sein. Diese fünf möglichen Fälle lassen sich aber durch die angegebenen Körper realisieren. --Jacks247 (Diskussion) 10:23, 28. Jan. 2015 (CET)
Duale platonische Körper
Was ist das und wie kann man sich diese vorstellen? Fotos unserer selbst gebauten dualen platonischen Körper.
Man erhält die Dualkörper indem man die Mittelpunkte der einander gegenüberliegenden Flächen der Platonischer Körper verbindet.Dadurch hat der Dualkörper genauso viele Ecken wie der Platonische Körper Flächen und so viele Flächen wie der Pöatonischekörper Ecken. Die Anzahl der Kanten ist beim Platonischen Körper und beim Dualkörper gleich. Delfin (Diskussion) 21:29, 12. Sep. 2014 (CEST)
Es gibt genau 5 platonische Körper
Beweis des Satzes!